MATH6103 Differential & Integral Calculus Notes in Brief

Department of Mathematics, University College London

Matthew Scroggs web: www.mscroggs.co.uk/6103 e-mail: matthew.scroggs.14@ucl.ac.uk

Spring 2016

Contents

1	Fun	ctions	2
	1.1	Polynomials	2
		1.1.1 Some polynomial degrees	3
	1.2	Exponentials	4
	1.3	Trigonometric functions	4
		1.3.1 Measuring angles	4
		1.3.2 Properties of sin, cos and tan	5
	1.4	Polar co-ordinates	6
2	Diff	erentiation	7
	2.1	Finding the gradient	7
	2.2	Some common derivatives	7
	2.3	Rules for differentiation	8
	2.4	Polar co-ordinates	8
	2.5	Uses of differentiation	9
		2.5.1 Finding the gradient at a point	9
		2.5.2 Finding the maximum and minimum points	9
	2.6	Differentiating inverse functions	9
3	\mathbf{Exp}	onentials and Logarithms	10
	3.1	Exponentials	10
	3.2	Logarithms	11

		3.2.1	The natural logarithm	1
		3.2.2	Differentiation of other logarithms 1	1
	3.3	Differe	entiation of other exponentials $\ldots \ldots \ldots$	2
4	Inte	egratio	n 13	3
	4.1	Findir	ng integrals	3
	4.2	Rules	for integration $\ldots \ldots 13$	3
		4.2.1	Partial fractions	4
		4.2.2	$Trapezium method \dots \dots$	5
5	Diff	erenti	al Equations 16	3
	5.1	First o	order differential equations 16	6
		5.1.1	Integrating factors	7
	5.2	Comp	lementary functions and particular integrals $\ldots \ldots \ldots$	8
		5.2.1	Finding complementary functions	8
		5.2.2	Finding a particular integral	9
		5.2.3	Euler's method	9

Using These Notes

These notes are intended as a revision aid. I started with the full lecture notes of the course and taken out all unnecessary detail, examples, etc. to leave a minimal outline of the course. If you need more detail on a topic, look at the relevant section in the full notes!

Throughout these notes in brief, you will find boxes that look like this:

A-level C1 Differentiation

These boxes contain references to the parts of GCSE and A-level maths that are relevant to the section. These may be useful as there is a great range of GCSE and A-level revision material online. These are all based on the syllabus of the EdExcel exam board, as this is the one I am familiar with. Other exam boards are mostly the same.

Functions

A-level C1 functions

 $\mathbb{Z} = \{ \text{all whole numbers} \} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$ $\mathbb{N} = \{ \text{all positive whole numbers} \} = \{ 0, 1, 2, 3, \dots \}$ $\mathbb{R} = \{ \text{all real numbers} \}$

$f:A\to B$

A is the **domain** of f. B^1 is the **range** of f.

If $x \neq y$ implies $f(x) \neq f(y)$, the function is **one-to-one**. Otherwise, the function is **many-to-one**.

If f(-x) = f(x), f is even. If f(-x) = -f(x), f is odd.

If f(x+T) = f(x) for all x, then f(x) is a **periodic function** with period T.

Vertical/horizontal asymptotes are vertical/horizontal lines that the function approached but never reaches.

1.1 Polynomials

A polynomial is a function P with a general form

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

¹ or a subset of B

1.1.1 Some polynomial degrees

Degree 0

This polynomial is simply a constant.

Degree 1

 $P_1(x) = ax + b \ (a \neq 0)$. a is the gradient. b is the y-intercept

Degree 2

 $P_2(x) = ax^2 + bx + c, a \neq 0$ are called quadratics.

GCSE quadratics A-level C1 quadratics

1. Factorising

Example

$$P(x) = x^{2} - 3x + 2 \qquad = (x - 2)(x - 1)$$

The solutions of P(x) = 0 are x = 2 and x = 1.

2. Completing the square

Example $P(x) = x^{2} - 3x + 2$ $= (x - \frac{3}{2})^{2} - (\frac{-3}{2})^{2} + 2$ $(x - \frac{3}{2})^{2} - (\frac{-3}{2})^{2} + 2 = 0$ $(x - \frac{3}{2})^{2} = \frac{1}{4}$ $x - \frac{3}{2} = \pm \frac{1}{2}$ x = 1 or 2

3. The quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Degree ≥ 3

A-level C2 Remainder theorem

Theorem: Factor theorem

$$P(a) = 0$$
 if and only if $P(x) = (x - a)Q(x)$

1.2 Exponentials

GCSE Indices and powers

 $a^{x+y} = a^x \cdot a^y$ $(a^x)^y = a^{xy}$ $a^x \cdot b^x = (ab)^x$ $a^0 = 1$ $a^{-x} = \frac{1}{a^x}$ $a^{\frac{1}{n}} = \sqrt[n]{a}$ $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$

1.3 Trigonometric functions

1.3.1 Measuring angles

GCSE Trigonometry A-level C3 Radians

 $1 \operatorname{turn} = 360^{\circ} = 2\pi \operatorname{rad}$ $\frac{1}{2} \operatorname{turn} = 180^{\circ} = \pi \operatorname{rad}$

"SOH CAH TOA"

1.3.2 Properties of sin, cos and tan

A-level C2 Trigonometry A-level C3 Trigonometry

 $\cos^2\theta + \sin^2\theta = 1$

cos and sin are periodic functions with period 2π (i.e. for any x, $\cos(x + 2\pi) = \cos x$, $\sin(x + 2\pi) = \sin x$).

 $\cos : \mathbb{R} \to [-1, 1]$ and $\sin : \mathbb{R} \to [-1, 1]$.

cos is an even function. sin is an odd function.

cos and sin are the same shape but shifted by $\pi/2$, which means

$$\cos\left(\theta - \frac{\pi}{2}\right) = \sin\theta$$
$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$$

 $\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$ $\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$

$$\sin 2\theta = 2\sin\theta\cos\theta$$
$$\cos 2\theta = 1 - 2\sin^2\theta$$
$$\cos 2\theta = 2\cos^2\theta - 1$$

$$\cos^{2}\left(\frac{\alpha}{2}\right) = \frac{1+\cos\alpha}{2}$$
$$\sin^{2}\left(\frac{\alpha}{2}\right) = \frac{1-\cos\alpha}{2}$$

tan has vertical asymptotes at $\theta = \frac{\pi}{2} (2N - 1)$ for $N \in \mathbb{Z}$. tan : $\mathbb{R} \setminus \{\frac{\pi}{2}(2N - 1) : N \in \mathbb{Z}\} \to \mathbb{R}$

tan is periodic with period π .

$$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$$

The secant, cosecant and cotangent functions are defined as

$$\sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{1}{\tan x}.$$

Angle ($^{\circ}$)	Angle (^c)	\sin	cos	tan
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{3}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	∞

 $1 + \tan^2 x = \sec^2 x.$

1.4 Polar co-ordinates

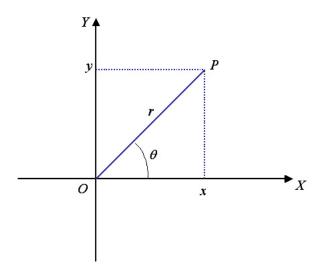


Figure 1.1: Polar co-ordinates are given by r and θ .

$x = r \cos \theta$	
$y = r\sin\theta$	

Differentiation

 $\text{gradient} = \frac{\text{change in } y}{\text{change in } x}$

2.1 Finding the gradient

A-level C1 Differentiation A-level C2 Differentiation A-level C3 Differentiation

Definition Differentiation by first principles:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

2.2 Some common derivatives

IMPORTANT: Always use radians!

f(x)	f'(x)
x^n	nx^{n-1}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$

2.3 Rules for differentiation

A-level C4 Differentiation

The sum rule

$$\frac{d}{dx}\left(f(x) + g(x)\right) = \frac{d}{dx}\left(f(x)\right) + \frac{d}{dx}\left(g(x)\right)$$

The product rule

$$\frac{d}{dx}\left(f(x)g(x)\right) = \frac{d}{dx}\left(f(x)\right)g(x) + f(x)\frac{d}{dx}\left(g(x)\right)$$

The chain rule

$$\frac{d}{dx}\left(f(g(x))\right) = f'(g(x))g'(x)$$

The quotient rule

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

2.4 Polar co-ordinates

The chain rule can be rearranged to give:

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

 $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$

 $= \frac{e^t}{2t}$

Example $x = t^2 + 4; y = e^t$

2.5 Uses of differentiation

2.5.1 Finding the gradient at a point

The gradient of f at x = k is f(k).

2.5.2 Finding the maximum and minimum points

• Local maximum

	f'(x) = 0
	f''(x) < 0
• Local minimum	
	f'(x) = 0
	f''(x) > 0
• Need more information	
	f'(x) = 0
	f''(x) = 0

2.6 Differentiating inverse functions

Definition f^{-1} is the inverse of f :		
	$f^{-1}(f(x)) = x$	

note: Sometimes, arcsin, arccos and arctan are used to represent \sin^{-1} , \cos^{-1} and \tan^{-1} .

Finding the derivative of an inverse

$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

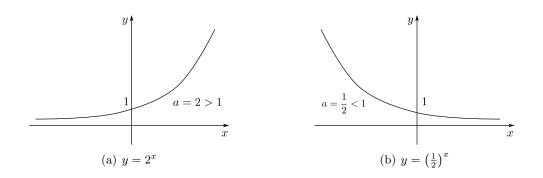
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

Exponentials and Logarithms

3.1 Exponentials

A-level C3 Exponentials and Logarithms

 $f(x) = a^x,$



 $e\approx 2.718281828459\ldots$

Definition

 $f(x) = e^x = \exp(x)$ is the **exponential function**.

Property $rac{d}{dx}(e^x) = e^x.$

3.2 Logarithms

A-level C2 Exponentials and Logarithms A-level C3 Exponentials and Logarithms

Definition

The inverse of a^x is $\log_a x$.

Laws of Logs

1.
$$\log_a(MN) = \log_a M + \log_a N$$
.

2. $\log_a(M^p) = p \log_a M$.

Example

Find x, given $3^x = 7$.

$\ln(3^{x}) = \ln 7$ $x \ln 3 = \ln 7.$ $x = \frac{\ln 3}{\ln 7}$ ≈ 1.77

3.2.1 The natural logarithm

A-level C3 Exponentials and Logarithms

Definition

The inverse of $f(x) = e^x$ is the **natural logarithm**, $\ln x$.

Property

$$\frac{d}{dx}(\ln x) = \frac{1}{x}.$$

3.2.2 Differentiation of other logarithms

A-level C3 Exponentials and Logarithms

Property: Change of base
$\log_a x = \frac{\log_b x}{\log_b a}$
Property
$\frac{d}{dx}\left(\log_a x\right) = \frac{1}{x\ln a}.$

3.3 Differentiation of other exponentials

A-level C3 Exponentials and Logarithms

In general, for any positive constant a

$$\frac{d}{dx}(a^x) = a^x \ln a.$$

Integration

Integration = Finding the area under the curve.

Theorem: Fundamental Theorem of Calculus

$$\int_{a}^{b} g'(x) \, dx = g(a) - g(b)$$

4.1 Finding integrals

A-level C1 integration A-level C2 integration A-level C4 integration

f(x)	$\int f(x) dx$
ax^b	$\frac{ax^{b+1}}{b+1} + c$
$\frac{1}{x}$	$\ln x + c$
e^x	$e^x + c$
a^x	$\frac{a^x}{\ln a} + c$
$\cos x$	$\sin x + c$
$\sin x$	$-\cos x + c$

4.2 Rules for integration

Sum Rule

$$\int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx \tag{4.1}$$

Multiplication by a constant

$$\int Kf(x) \, dx = K \int f(x) \, dx \tag{4.2}$$

A special case

$$\int \frac{f'(x)}{f(x)} \, dx = \ln(f(x)) + c$$

Example: Integration by Substitution

A-level C4 Integration

$$\int (2x+3)^{100} dx$$

 $u = 2x+3.$
 $\frac{du}{dx} = 2$
 $dx = \frac{1}{2} du.$

$$\int (2x+3)^{100} dx = \int u^{100} \cdot \frac{1}{2} du$$

 $= \frac{1}{2} \int u^{100} du$
 $= \frac{1}{2} \cdot \frac{1}{101} u^{101}$
 $= \frac{1}{202} (2x+3)^{101} + c.$

Integration by Parts

A-level C4 Integration

$$\int u \frac{dv}{dx} \, dx = uv - \int v \frac{du}{dx} \, dx.$$

4.2.1 Partial fractions

A-level C4 Integration

Example

$$\frac{1}{x^2 - 1}$$

$$x^2 - 1 = (x + 1)(x - 1)$$

$$\frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1},$$

$$1 = A(x + 1) + B(x - 1)$$

Substituting in x = 1 gives 1 = 2A. Substituting in x = -1 gives 1 = -2B. $A = \frac{1}{2}; B = -\frac{1}{2}$. $\frac{1}{x^2 - 1} = \frac{1}{2(x - 1)} - \frac{1}{2(x + 1)}$

4.2.2 Trapezium method

A-level C2 Integration A-level C4 Integration

This is a method for approximating an integral.

$$\int_{a}^{b} f(x) \, dx \approx \frac{h}{2} \left(f(a) + 2f(a+h) + \dots + 2f(a+(n-1)h) + f(b) \right)$$

Differential Equations

5.1 First order differential equations

A-level C4 Integration

Here we will consider different techniques to solve first order ODEs.

Definition A function f(x, y) is **separable** if it can be written as

$$f(x,y) = g(x)h(y)$$

Example: Separating the variables

$$\frac{dy}{dx} = xy,$$

$$\frac{1}{y} dy = x dx$$

$$\int \frac{1}{y} dy = \int x dx$$

$$\ln y = \frac{1}{2}x^2 + C$$

$$y = e^{\frac{1}{2}x^2 + C} = Ae^{\frac{1}{2}x^2}, \quad A = e^C.$$

If boundary conditions are given, substitute them in to find the constant(s).

5.1.1 Integrating factors

A-level FP2 First Order Differential Equations

Definition The **integrating factor** of the ODE

is

$$\exp\left(\int g(x) \, dx\right).$$

 $\frac{dy}{dx} + g(x)y = f(x).$

Example

$$\frac{dy}{dx} + \frac{y}{x} = x.$$

The integrating factor is:

$$\exp\left(\int \frac{1}{x} \, dx\right) = \exp\left(\ln x\right)$$
$$= x$$

Multiplying through by the integrating factor gives:

$$x\frac{dy}{dx} + y = x^2$$

Notice that:

$$\frac{d}{dx}\left(xy\right) = x\frac{dy}{dx} + y$$

Therefore:

$$\frac{d}{dx}(xy) = x^2$$
$$xy = \int x^2 dx$$
$$= \frac{x^3}{3} + c$$
$$y = \frac{x^2}{3} + \frac{c}{x}$$

5.2 Complementary functions and particular integrals

A-level FP2 Second Order Differential Equations

Definition

When y = f(x) + cg(x) is the solution of an ODE, f is called the **particular** integral (P.I.) and g is called the complementary function (C.F.).

- 1. The complementary function (g) is the solution of the homogenous ODE.
- 2. The particular integral (f) is any solution of the non-homogenous ODE.

5.2.1 Finding complementary functions

Aim: find two independent solutions to

$$\frac{d^2y}{dx^2} + A\frac{dy}{dx} + By = 0$$

Definition

 $\lambda^2 + A\lambda + B = 0$

is the characteristic equation or auxiliary equation of

$$\frac{d^2y}{dx^2} + A\frac{dy}{dx} + By = 0.$$

Case 1: Two distinct real roots

$$\lambda_1 = \frac{-r + \sqrt{A^2 - 4B}}{2}$$
 and $\lambda_2 = \frac{-r - \sqrt{A^2 - 4B}}{2}$
 $g(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}.$

Case 2: Repeated root

$$\lambda_1 = \frac{A}{B}.$$
$$g(x) = (c_1 + c_2 x)e^{\lambda_1 x}$$

Case 3: No real roots

$$g(x) = e^{\alpha x} \left(c_1 \cos \beta x + c_2 \sin \beta x \right),$$

where $\alpha = -\frac{A}{2}$ and $\beta = \frac{\sqrt{4B-A^2}}{2}$.

5.2.2 Finding a particular integral

The particular integral is found by guessing its form, then finding the constants. It depends on the right hand side, p(x).

p(x)	guess
1	С
x	ax + b
x^2	$ax^2 + bx + c$
sin or cos	$a\sin x + b\sin x$
e^{ax} and a is not a solution of the characteristic equation	Ae^ax
e^{ax} and a is a solution of the characteristic equation	$Axe^{a}x$
e^{ax} and a is a repeated solution of the characteristic equation	Ax^2e^ax

5.2.3 Euler's method

Not in GCSE or A-level

This is a method for approximately solving an ODE. Given:

$$\frac{dy}{dx} = f(x, y), \quad y(a) = y_0.$$

We want to find y(b).

Let $x_k = a + kh$. We use:

$$y_{k+1} = y_k + hf(x_k, y_k)$$