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Using These Notes

These notes are intended as a revision aid. I started with the full lecture notes of the
course and taken out all unnecessary detail, examples, etc. to leave a minimal outline of
the course. If you need more detail on a topic, look at the relevant section in the full
notes!

Throughout these notes in brief, you will find boxes that look like this:

A-level C1 Differentiation

These boxes contain references to the parts of GCSE and A-level maths that are relevant
to the section. These may be useful as there is a great range of GCSE and A-level revision
material online. These are all based on the syllabus of the EdExcel exam board, as this
is the one I am familiar with. Other exam boards are mostly the same.
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Chapter 1

Functions

A-level C1 functions

Z = {all whole numbers} = {. . . ,−2,−1, 0, 1, 2, . . . }
N = {all positive whole numbers} = {0, 1, 2, 3, . . . }
R = {all real numbers}

f : A → B
A is the domain of f . B1 is the range of f .

If x ̸= y implies f(x) ̸= f(y), the function is one-to-one.
Otherwise, the function is many-to-one.

If f(−x) = f(x), f is even.
If f(−x) = −f(x), f is odd.

If f(x+ T ) = f(x) for all x, then f(x) is a periodic function with period T .

Vertical/horizontal asymptotes are vertical/horizontal lines that the function ap-
proached but never reaches.

1.1 Polynomials

A polynomial is a function P with a general form

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

1or a subset of B

2



CHAPTER 1. FUNCTIONS 3

1.1.1 Some polynomial degrees

Degree 0

This polynomial is simply a constant.

Degree 1

P1(x) = ax+ b (a ̸= 0). a is the gradient. b is the y-intercept

Degree 2

P2(x) = ax2 + bx+ c, a ̸= 0 are called quadratics.

GCSE quadratics
A-level C1 quadratics

1. Factorising

Example

P (x) = x2 − 3x+ 2 = (x− 2)(x− 1)

The solutions of P (x) = 0 are x = 2 and x = 1.

2. Completing the square

Example

P (x) = x2 − 3x+ 2

=
(
x− 3

2

)2 − (−3
2

)2
+ 2

(
x− 3

2

)2 − (−3
2

)2
+ 2 = 0(

x− 3
2

)2
= 1

4

x− 3
2 = ±1

2

x = 1 or 2

3. The quadratic formula
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x =
−b±

√
b2 − 4ac

2a
.

Degree ≥ 3

A-level C2 Remainder theorem

Theorem: Factor theorem

P (a) = 0 if and only if P (x) = (x− a)Q(x)

1.2 Exponentials

GCSE Indices and powers

ax+y = ax · ay

(ax)y = axy

ax · bx = (ab)x

a0 = 1

a−x =
1

ax

a
1
n = n

√
a

a
m
n =

(
n
√
a
)m

1.3 Trigonometric functions

1.3.1 Measuring angles

GCSE Trigonometry
A-level C3 Radians

1 turn = 360◦ = 2π rad
1
2 turn = 180◦ = π rad

“SOH CAH TOA”
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1.3.2 Properties of sin, cos and tan

A-level C2 Trigonometry
A-level C3 Trigonometry

cos2 θ + sin2 θ = 1

cos and sin are periodic functions with period 2π (i.e. for any x, cos(x + 2π) = cosx,
sin(x+ 2π) = sinx).

cos : R → [−1, 1] and sin : R → [−1, 1].

cos is an even function. sin is an odd function.

cos and sin are the same shape but shifted by π/2, which means

cos
(
θ − π

2

)
= sin θ

sin
(
θ +

π

2

)
= cos θ

cos(θ + ϕ) = cos θ cosϕ− sin θ sinϕ

sin(θ + ϕ) = sin θ cosϕ+ cos θ sinϕ

sin 2θ = 2 sin θ cos θ

cos 2θ = 1− 2 sin2 θ

cos 2θ = 2 cos2 θ − 1

cos2
(α
2

)
=

1 + cosα

2

sin2
(α
2

)
=

1− cosα

2

tan has vertical asymptotes at θ = π
2 (2N − 1) for N ∈ Z.

tan : R \ {π
2 (2N − 1) : N ∈ Z} → R

tan is periodic with period π.

tan(θ + ϕ) =
tan θ + tanϕ

1− tan θ tanϕ

The secant, cosecant and cotangent functions are defined as

secx =
1

cosx
, cosecx =

1

sinx
, cotx =

1

tanx
.
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1 + tan2 x = sec2 x.

Angle (◦) Angle (c) sin cos tan

0 0 0 1 0

30 π
6

1
2

√
3
2

3√
3

45 π
4

1√
2

1√
2

1

60 π
3

√
3
2

1
2

√
3

90 π
2 1 0 ∞

1.4 Polar co-ordinates

Figure 1.1: Polar co-ordinates are given by r and θ.

x = r cos θ

y = r sin θ



Chapter 2

Differentiation

gradient =
change in y

change in x

2.1 Finding the gradient

A-level C1 Differentiation
A-level C2 Differentiation
A-level C3 Differentiation

Definition
Differentiation by first principles:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

2.2 Some common derivatives

IMPORTANT: Always use radians!

f(x) f ′(x)

xn nxn−1

sinx cosx
cosx − sinx
tanx sec2 x

7



CHAPTER 2. DIFFERENTIATION 8

2.3 Rules for differentiation

A-level C4 Differentiation

The sum rule

d

dx
(f(x) + g(x)) =

d

dx
(f(x)) +

d

dx
(g(x))

The product rule

d

dx
(f(x)g(x)) =

d

dx
(f(x)) g(x) + f(x)

d

dx
(g(x))

The chain rule

d

dx
(f(g(x))) = f ′(g(x))g′(x)

The quotient rule

d

dx

(
f(x)

g(x)

)
=

f ′(x)g(x)− f(x)g′(x)

(g(x))2

2.4 Polar co-ordinates

The chain rule can be rearranged to give:

dy

dx
=

dy/dt

dx/dt

Example
x = t2 + 4; y = et

dy

dx
=

dy/dt

dx/dt

=
et

2t
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2.5 Uses of differentiation

2.5.1 Finding the gradient at a point

The gradient of f at x = k is f(k).

2.5.2 Finding the maximum and minimum points

• Local maximum
f ′(x) = 0

f ′′(x) < 0

• Local minimum
f ′(x) = 0

f ′′(x) > 0

• Need more information
f ′(x) = 0

f ′′(x) = 0

2.6 Differentiating inverse functions

Definition
f−1 is the inverse of f :

f−1(f(x)) = x

note: Sometimes, arcsin, arccos and arctan are used to represent sin−1, cos−1 and tan−1.

Finding the derivative of an inverse

d

dx

(
f−1(x)

)
=

1

f ′(f−1(x))

dy

dx
=

1
dx
dy



Chapter 3

Exponentials and Logarithms

3.1 Exponentials

A-level C3 Exponentials and Logarithms

f(x) = ax,

(a) y = 2x (b) y =
(
1
2

)x

e ≈ 2.718281828459 . . .

Definition
f(x) = ex = exp(x) is the exponential function.

Property

d

dx
(ex) = ex.

10
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3.2 Logarithms

A-level C2 Exponentials and Logarithms
A-level C3 Exponentials and Logarithms

Definition
The inverse of ax is loga x.

Laws of Logs

1. loga(MN) = logaM + logaN .

2. loga(M
p) = p logaM .

Example
Find x, given 3x = 7.

ln(3x) = ln 7

x ln 3 = ln 7.

x =
ln 3

ln 7
≈ 1.77

3.2.1 The natural logarithm

A-level C3 Exponentials and Logarithms

Definition
The inverse of f(x) = ex is the natural logarithm, lnx.

Property

d

dx
(lnx) =

1

x
.

3.2.2 Differentiation of other logarithms

A-level C3 Exponentials and Logarithms
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Property: Change of base

loga x =
logb x

logb a

Property

d

dx
(loga x) =

1

x ln a
.

3.3 Differentiation of other exponentials

A-level C3 Exponentials and Logarithms

In general, for any positive constant a

d

dx
(ax) = ax ln a.



Chapter 4

Integration

Integration = Finding the area under the curve.

Theorem: Fundamental Theorem of Calculus∫ b

a
g′(x) dx = g(a)− g(b)

4.1 Finding integrals

A-level C1 integration
A-level C2 integration
A-level C4 integration

f(x)
∫
f(x) dx

axb axb+1

b+1 + c
1
x ln |x|+ c
ex ex + c

ax ax

ln a + c
cosx sinx+ c
sinx − cosx+ c

4.2 Rules for integration

Sum Rule ∫
(f(x) + g(x)) dx =

∫
f(x) dx+

∫
g(x) dx (4.1)

13
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Multiplication by a constant∫
Kf(x) dx = K

∫
f(x) dx (4.2)

A special case ∫
f ′(x)

f(x)
dx = ln(f(x)) + c

Example: Integration by Substitution

A-level C4 Integration

∫
(2x+ 3)100 dx

u = 2x+ 3.

du

dx
= 2

dx =
1

2
du.

∫
(2x+ 3)100 dx =

∫
u100 · 1

2
du

=
1

2

∫
u100 du

=
1

2
· 1

101
u101

=
1

202
(2x+ 3)101 + c.

Integration by Parts

A-level C4 Integration

∫
u
dv

dx
dx = uv −

∫
v
du

dx
dx.

4.2.1 Partial fractions

A-level C4 Integration
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Example

1

x2 − 1

x2 − 1 = (x+ 1)(x− 1)

1

x2 − 1
=

A

x− 1
+

B

x+ 1
,

1 = A(x+ 1) +B(x− 1)

Substituting in x = 1 gives 1 = 2A.
Substituting in x = −1 gives 1 = −2B.
A = 1

2 ; B = −1
2 .

1

x2 − 1
=

1

2(x− 1)
− 1

2(x+ 1)

4.2.2 Trapezium method

A-level C2 Integration
A-level C4 Integration

This is a method for approximating an integral.

∫ b

a
f(x) dx ≈ h

2
(f(a) + 2f(a+ h) + ...+ 2f(a+ (n− 1)h) + f(b))



Chapter 5

Differential Equations

5.1 First order differential equations

A-level C4 Integration

Here we will consider different techniques to solve first order ODEs.

Definition
A function f(x, y) is separable if it can be written as

f(x, y) = g(x)h(y).

Example: Separating the variables

dy

dx
= xy,

1

y
dy = x dx∫

1

y
dy =

∫
x dx

ln y =
1

2
x2 + C

y = e
1
2
x2+C = Ae

1
2
x2
, A = eC .

If boundary conditions are given, substitute them in to find the constant(s).

16
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5.1.1 Integrating factors

A-level FP2 First Order Differential Equations

Definition
The integrating factor of the ODE

dy

dx
+ g(x)y = f(x).

is

exp

(∫
g(x) dx

)
.

Example

dy

dx
+

y

x
= x.

The integrating factor is:

exp

(∫
1

x
dx

)
= exp (lnx)

= x

Multiplying through by the integrating factor gives:

x
dy

dx
+ y = x2

Notice that:
d

dx
(xy) = x

dy

dx
+ y

Therefore:

d

dx
(xy) = x2

xy =

∫
x2 dx

=
x3

3
+ c

y =
x2

3
+

c

x
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5.2 Complementary functions and particular integrals

A-level FP2 Second Order Differential Equations

Definition
When y = f(x) + cg(x) is the solution of an ODE, f is called the particular
integral (P.I.) and g is called the complementary function (C.F.).

1. The complementary function (g) is the solution of the homogenous ODE.

2. The particular integral (f) is any solution of the non-homogenous ODE.

5.2.1 Finding complementary functions

Aim: find two independent solutions to

d2y

dx2
+A

dy

dx
+By = 0

Definition

λ2 +Aλ+B = 0

is the characteristic equation or auxiliary equation of

d2y

dx2
+A

dy

dx
+By = 0.

Case 1: Two distinct real roots

λ1 =
−r +

√
A2 − 4B

2
and λ2 =

−r −
√
A2 − 4B

2

g(x) = c1e
λ1x + c2e

λ2x.

Case 2: Repeated root

λ1 =
A

B
.

g(x) = (c1 + c2x)e
λ1x.
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Case 3: No real roots

g(x) = eαx (c1 cosβx+ c2 sinβx) ,

where α = −A
2 and β =

√
4B−A2

2 .

5.2.2 Finding a particular integral

The particular integral is found by guessing its form, then finding the constants. It depends
on the right hand side, p(x).

p(x) guess

1 c
x ax+ b
x2 ax2 + bx+ c

sin or cos a sinx+ b sinx
eax and a is not a solution of the characteristic equation Aeax
eax and a is a solution of the characteristic equation Axeax

eax and a is a repeated solution of the characteristic equation Ax2eax

5.2.3 Euler’s method

Not in GCSE or A-level

This is a method for approximately solving an ODE. Given:

dy

dx
= f(x, y), y(a) = y0.

We want to find y(b).

Let xk = a+ kh. We use:

yk+1 = yk + hf(xk, yk)
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